(34.229.131.158)
Users online: 2533    [ij] [ij] [ij] 
Email id
 

Research Journal of Pharmacy and Technology
Year : 2017, Volume : 10, Issue : 3
First page : ( 715) Last page : ( 720)
Print ISSN : 0974-3618. Online ISSN : 0974-360X.
Article DOI : 10.5958/0974-360X.2017.00134.2

Detection and Classification of MRI Brain Images For Head/Brain Injury Using Soft Computing Techniques

Burje Shrikant1,*, Prof. Dr. Rungta Sourabh1, Prof. Dr. Shukla Anupam2

1Rungta College of Engineering and Technology, Bhilai, India

2IIITM, Gwalior, M.P., India

*Corresponding Author E-mail: sbburjepapers@gmail.com

Online published on 29 April, 2017.

Abstract

It is essential to have a rigorous computerized system for Magnetic Resonance Images (MRI) of the brain for medical perception and clinical analysis. This article focuses on our proposed method of hybrid approach for classification of normal and abnormalities in magnetic resonance brain images. Wavelet and PCA were functioning feature extraction and reduction from image respectively. The featured images finally were linked to Neuro-Fuzzy Classifier (NFC) for classification. The proposed methodology, including three basic steps, namely preprocessing, training and classified output. It extracts and reduced the dimension of features from the set of scan brain MR images of patients. Once preprocessing done, the featured image trained by soft computing based fuzzy neural tool and finally fed to the Neuro-Fuzzy Classifier (NFC) for detection of abnormalities in new MR images. The Hybrid NFC is combined with K-fold fuzzy C-means Neuro-Fuzzy Classifier which is used to enhance Abstraction of NFC. We focus on common brain diseases such as meningioma, Alzheimer's and visual agnosia as an abnormal brain. K-Fold Neuro Fuzzy Classifier provides the accuracy around 98% with minimum computational time.

Top

Keywords

MRI, PCA, NFC, DWT, PSNR.

Top

  
║ Site map ║ Privacy Policy ║ Copyright ║ Terms & Conditions ║ Page Rank Tool
642,764,562 visitor(s) since 30th May, 2005.
All rights reserved. Site designed and maintained by DIVA ENTERPRISES PVT. LTD..
Note: Please use Internet Explorer (6.0 or above). Some functionalities may not work in other browsers.