(3.222.251.91)
Users online: 2403    [ij] [ij] [ij] 
Email id
 

Year : 2022, Volume : 35, Issue : 1
First page : ( 44) Last page : ( 48)
Print ISSN : 0971-8184. Online ISSN : 0976-1926. Published online : 2022 April 24.
Article DOI : 10.5958/0976-1926.2022.00007.9

Machine Learning Algorithms for Protein Physicochemical Component Prediction Using Near Infrared Spectroscopy in Chickpea Germplasm

Priyadarshi Madhu Bala1,*, Sharma Anu2, Chaturvedi KK2, Bhardwaj Rakesh1, Lal SB2, Farooqi MS2, Kumar Sanjeev2, Mishra DC2, Singh Mohar1

1ICAR-National Bureau of Plant Genetic Resources (NBPGR), Pusa Campus, New Delhi-110012, India

2ICAR-Indian Agricultural Statistics Research Institute (IASRI), Pusa Campus, New Delhi-110012, India

*Author for Correspondence: Email- madhu74_nbpgr@yahoo.com

Online published on 24 June, 2022.

Received:  19  December,  2021; :  19  ,  2022; Accepted:  21  ,  2022.

Abstract

Prediction of physicochemical components of chickpea flour using near infrared spectroscopy requires discovering exact wavelength regions that provide the most useful data before preprocessing. This study used six essential machine learning techniques to develop models for predicting proteinphysicochemical component in chickpea: Linear Regression (LR), Artificial Neural Network (ANN), Partial Least Squares Regression (PLSR), Random Forest (RF), Support Vector Regression (SVR) and Decision Tree Regression (DTR). Performance measurements such as Root Mean Square Error and Karl Pearson’s Correlation Coefficient and Coefficient of Determination were used to validate the models. RF and ANN models showed significant improvement over all other models in terms of accuracy.

Top

Keywords

Artificial Neural Network, Chickpea, Machine learning, Near infrared spectroscopy, Random Forest, Spectroscopy.

Top

  
║ Site map ║ Privacy Policy ║ Copyright ║ Terms & Conditions ║ Page Rank Tool
609,850,204 visitor(s) since 30th May, 2005.
All rights reserved. Site designed and maintained by DIVA ENTERPRISES PVT. LTD..
Note: Please use Internet Explorer (6.0 or above). Some functionalities may not work in other browsers.