Anti-magic labeling for boolean graph of cycle (Cn)(n≥ 4) Subhramaniyan T.1, Manikandan K.2, Suruthi S.3 1Associate Professor, Department of Mathematics, Guru Nanak College, Chennai, India 2Assistant Professor, Department of Mathematics, Guru Nanak College, Chennai, India 3Assistant Professor, Department of Mathematics, D. B. Jain College, Chennai, India Online published on 7 May, 2019. Abstract A graph G is anti-magic if there is a labeling of its edges with 1, 2, …, |E| such that the sum of the labels assigned to edges incident to distinct vertices are different. A conjecture of Hartsfield and Ringel states that every connected graph different from K2 is anti-magic. Our main result validates this conjecture for Boolean graph of cycle Cn(n ≥ 4) is anti-magic. Top Keywords Boolean graph BG (G), Anti-magic Labeling. Top |