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ABSTRACT:  
The effect of rotation on triple- diffusive convection in Walters’ (Model B´) fluid in porous medium is considered in the 

presence of uniform vertical rotation. For the case of stationary convection, the stable solute gradients and rotation have 

stabilizing effect on the system, whereas the medium permeability has a destabilizing (or stabilizing) effect on the system 

under certain conditions. A linear stability analysis theory and normal mode analysis method have been carried out to study 

the onset convection. The kinematic viscoelasticity has no effect on the stationary convection. The solute gradients, rotation, 

porosity and kinematic viscoelasticity introduce oscillatory modes in the system, which were non-existent in their absence. 

The sufficient conditions for the non-existence of overstability are also obtained. 
 

KEY WORDS: Triple- diffusive convection; Walters’ (Model B´) fluid; Thermal convection; Solute gradients; Vertical 

magnetic field; Rotation. 

 

INTRODUCTION: 
The theoretical and experimental results of the onset of thermal 

instability (Bénard convection) in a fluid layer under varying 

assumptions of hydrodynamics have been treated by 

Chandrasekhar [1981] in his celebrated monograph. The 

problem of thermohaline convection in a layer of fluid heated 

from below and subjected to a stable salinity gradient has been 

considered by Veronis [1965].The Physics is quite similar to 

the stellar case in that helium acts like salt in raising the density 

and in diffusing more slowly than heat. The conditions under 

which convective motions are important in stellar atmospheres 

are usually far removed from consideration of a single 

component fluid and rigid boundaries, and therefore it is 

desirable to consider a fluid acted on by solute gradients and 

free boundaries. The problem of the onset of thermal instability 

in the presence of solute gradients is of great importance 

because of its applications to atmospheric Physics and 

Astrophysics, especially in the case of the ionosphere and the 

outer layer of the atmosphere. The double-diffusive convection 

problems also arise in oceanography, limnology and 

engineering. With the growing importance of non-Newtonian 

fluids in modern technology and industries, the investigations 

on such fluids are desirable. The Walters’ [1962] fluid (Model 

B´) is one such fluid. In another study Sharma and Kumar 

[1995] have studied the steady flow and heat transfer of 

Walters’ (Model B´) fluid through a porous pipe of uniform 

circular cross- section with small suction. 
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Sharma and Kumar [1997] have studied the stability of the 

plane interface separating two viscoelastic Walters’ (Model B´) 

fluid of uniform densities and found that for stable 

configuration, the system is stable or unstable under certain 

conditions. Sharma et al. [1998, 1999] have studied the 

thermosolutal instability of Walters’ (Model B´) fluid in porous 

medium. In many astrophysical situations, the effect of rotation 

on thermosolutal convection in porous medium is also 

important.  

 

In recent years, the investigation of flow of fluids through the 

porous media has become an important topic.  A great number 

of applications in Geophysics may be found in the book written 

by Philips [9].When the fluid permeates through a porous 

material, the gross effect is represented by the law. As a result 

of this macroscopic law, the usual viscous term  in  the  

equation  of  Walters’ (Model B´) fluid  motion is  replaced by 

the  resistance  term �� �
��

�� � �′  		
 )q ], where � and �′ are 

the viscosity and viscoelasticity of the Walters’ fluid, �� is the 

medium permeability  and q is the Darcian (filter) velocity of 

the fluid. The problem of the thermosolutal convection in fluids 

in porous medium is of great importance in Geophysics, Soil 

Sciences, ground water Hydrology and Astrophysics. 

Generally, it is accepted that comets consists of a dust 

“snowball” made of mixture of frozen gases which, in the 

process of their journey, changes from solid to gas and vice-

versa. The physical properties of comets, meteorites and 

interplanetary dust strongly suggest the importance of porosity 

in astrophysical context Mc Donnel [1978]. Out of large 

published work in pure fluid, the thermosolutal convection in 

porous medium has received only attention, because of its 
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various engineering applications. A comprehensive review of 

the literature concerning thermosolutal convection in a fluid-

saturated porous medium may be found in the book written by 

Nield and Bejan [1992]. The thermal convection of Walters’ 

(Model B´) fluid has been studied by many authors [1999b, 

2000]. A recent review of numerical techniques and their 

applications may be found in O’Sullivan et al; [2000]. 

Oldenburg and Pruess [1998] have developed a model for 

convection in a Darcy’s porous medium, where the mechanism 

involves temperature, NaCl, CaCl2 and KCl. Solar ponds are a 

particularly promising means of harnessing energy from the 

Sun by preventing convective overturning in a thermohaline 

system by salting from below. But we also appreciate the work 

of Bhattacharyya and Abbas [1985] and Qin and Kaloni [1992] 

, they have considered the effect of rotation in angular 

momentum equation. 

 

In the standard Bénard problem, the instability is driven by a 

density difference caused by a temperature difference between 

the upper and lower planes bounding the fluid. If the fluid, 

additionally has salt dissolved in it , then there are potentially 

two destabilizing sources for the density difference, the 

temperature field and salt field. The solution behavior in the 

double-diffusive convection problem is more interesting than 

that of the single component situation in so much as new 

instability phenomena may occur which is not present in the 

classical Bénard problem. When temperature and two or more 

component agencies, or three different salts, are present then 

the physical and mathematical situation becomes increasingly 

richer. Very interesting results in triply diffusive convection 

have been obtained by Pearlstein et al., [1989]. The results of 

Pearlstein et al., are remarkable. They demonstrate that for 

triple diffusive convection linear instability can occur in 

discrete sections of the Rayleigh number domain with the fluid 

being linearly stable in a region in between the linear instability 

ones. This is because for certain parameters the neutral curve 

has a finite isolated oscillatory instability curve lying below the 

usual unbounded stationary convection one. Straughan and 

Walker [1997] derive the equations for non-Boussinesq 

convection in a multi- component fluid and investigate the 

situation analogous to that of Pearlstein et al., but allowing for 

a density non linear in the temperature field. Lopez et al., 

[1990] derive the equivalent problem with fixed boundary 

conditions and show that the effect of the boundary conditions 

breaks the perfect symmetry. In reality the density of a fluid is 

never a linear function of temperature, and so the work of 

Straughan and Walker applies to the general situation where 

the equation of state is one of the density quadratic in 

temperature. This is important, since they find that departure 

from the linear Boussinesq equation of state changes the 

perfect symmetry of the heart shaped  neutral curve of 

Pearlstein et al. 

 

In view of the recent increase in the number of non iso-thermal 

situations, we intend to extend our work to the problem of 

thermal convection in Walters’ (Model B´) fluid on triple-

diffusive convection in the presence of rotation in porous 

medium. 

 

2. MATHEMATICAL FORMULATION OF THE 

PROBLEM 
Here we consider an infinite, horizontal layer of thickness d of 

an electrically non-conducting incompressible Walters’ (Model 

B´)  fluid heated and salted from below. The temperature T and 

solute concentrations C1
 and C2 at the bottom and top surfaces 

z = 0, d are T0 and T1 ; C0
1 and C1

1; and C0
2 and C1

2 

respectively, and a uniform temperature gradient �� | ��
�� |) 

and uniform solute gradients  ��� �´ � | ���   
�� |)   and �´´  

� | ���

�� |) are maintained. Both the boundaries are taken to be 

free and perfect conductors of heat. The gravity field g(0,0,-g) 

and a uniform magnetic field H (0,0,H) pervade on the system. 

This fluid layer is assumed to be flowing through an isotropic 

and homogeneous porous medium of the porosity � and the 

permeability ��. 

 

 

The equations expressing the conservation of momentum, mass, temperature, solute concentrations and equation of Walters’ 

(Model B´) fluid are  

 

�
�   �����  �

�
�  � �. � �! = - � �

 "#
   �p + g (1+

%"
 "#

  ) - ���
�& � & ′  		
 ) q + '�    (q ( )  ,                                  (1) 

�. *  0 ,                                                                                                                                                      (2) 

E 
	,
	
   +   � �. �  T = - �2T,                                                                                                                            (3) 

E′
	�� 
	
   +   � �. �  T = -′ �2C1,                             (4) 

E ′′
	�� 
	
   +   � �. �  T = -′′ �2C2,                                                                                                                                 (5) 

        In terms of temperature T and the concentrations C 1
 and C 2, we suppose the density of the mixture is given by (known as 

density equation of state)  

.  =  . 0 [1- / (T- Ta
 ) + α´ ( C

 1 – Ca
1 ) + α´´ ( C 2 – Ca

2 ) ]                                                                          (6) 

 

where ., . 0, q,  t, g, & , & ′ , -, -1, - ´´, /, α´, α´´ are the fluid density ,reference density, velocity,  time, gravitational acceleration, 

the  kinematic  viscosity, the kinematic  viscoelasticity,  the thermal diffusivity, the solute diffusivity -′and -´´,  thermal 

coefficient of expansion, solvent coefficient of expansion α´ and α´´respectively. Ta is the average temperature given by  Ta = 

(T0+T1)/2     where T0
 and T1 are the constant average temperatures of the lower and upper surfaces of the layer and Ca

1 and 

Ca
2are the average concentrations given by Ca

1 = (C0
1+C1

1)/2  and  Ca
2 = (C0

2+C1
2)/2 , where C0

1 , C1
1 and C0

2, C1
2are the 

constant average concentrations of the lower and upper surfaces of the layer. In writing equation (2), we also use the Boussinesq 

approximation by allowing the density to change only in the gravitational body force term. When the permeability of the porous 

material is low, then the inertial force becomes relatively insignificant as compared with the viscous drag when flow is 

considered. And as we know  �� ��. � �   term is generally small, so it seems best to drop it in numerical work.. 
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A porous medium of very low permeability allows us to use the Darcy’s model. For a medium of very large stable particle 

suspension, the permeability tends to be small justifying the use of Darcy’s model. This is because the viscous drag force is 

negligibly small in comparison with Darcy’s resistance due to the large particle suspension. Here E = � + (1-� ) 
"2 32
"# 34

  is a 

constant and E′, E ′′ are analogous to E but corresponding to solute rather than heat. .5, 65  and .7, 68   stand for density and heat 

capacity of solid (porous) material and fluid respectively. The steady state solution is  

q = (0,0,0),    T = -�9 � Ta ,  C
1

 =   -�′9 �  :1
a ,  C

2
 =  -�′′9 �  :2

a ,     β =(T0 - T1)/d  ,   

 β´ = (C1
1- C0

1)/d,  β´´ = (C1
2- C0

2)/d,   ρ = - ρ0 (1 � / �9 � α´ �′9 � /´´ �′′9 ).                                   (7) 

 

Here we use the linearized stability theory and the normal mode method. Consider a small perturbation on the steady state 

solution and let <=, <., >, ?, ? ′,  q(u, v, w) denote, respectively , the perturbation in pressure, density ., temperature T, solute 

concentrations C1, C2 and velocity q (0,0,0). The change in density <., caused mainly by the perturbations 

>, in temperature   and γ, γ′ in concentrations, is given by 

 <.  = - ρ0 (/> � /′? � /′′?′ )                                                                                                                    (8) 

 

Then the linearized perturbation equations become 
�
�   

��
��  = - � �

 "#
   �<p - g (/> � /′? � /′′?′  ) - ���

�& � & ′  		
 ) q + '�    (q ( )  ,                                        (9) 

�. *  0 ,                                                                                                                                                      (10)                                          

E 
	,
	
   = � ω �- �2>,                                                                                                                                    (11) 

E′
	I
	
   =�’ω� -′ �2?,                                                                                                                                  (12) 

E ′′
	I′
	
    = �’′ω + -′′ �2 ?′ ,                                                                                                                        (13) 

 

3. DISPERSION RELATION: 
Analysing the disturbances into normal modes, we assume that the perturbation quantities are of the form 

[ω,  >, ?, ?′, J ] = [W(z),   Θ�z ,   Z(z),  Γ�z ,  Ψ�z   Lexpi� i�Nx � i �O y � nt ) 
where kx ,ky are the wave numbers along the x- and y-directions, respectively  and k  √� kx

2 + ky
2) is the resultant wave number 

and n is the growth rate which is, in general, a complex constant. J = 
	R
	N  - 

	S
	O   stands for the z-component of vorticity.  

Expressing the coordinates x, y, z in the new unit of length d and letting  

a = kd,  σ = 
T ��

R ,   =� = 
U
V  ,  W�  =

U
V′  , W'  =

U
V′′ , F = 

U
�� , XY = 

��
�� , and D = 

�
Z[ .                                        (14) 

Equation (9) – (13), with the help of expression (14), in non dimensional form become 

� \�    �  �
]^

�1 �  _` L  (D
2� a2 ) W � 

ab��� 

R  (/c � /′Γ� /′′d  ) - 'Ω�e 

�U  DZ = 0 ,                                (15) 

� \�    �  �
]^

�1 �  _` L  Z = ( 
'Ω� 

�U   ) DW,                                                                                                       (16) 

 (D2� a2� E=�_ ) c = �� f�� 

V  ) W,                                                                                                          (17) 

(D2� a2� E’W�_ ) g = �� f’�
� 

V′  ) W,                                                                                                         (18) 

(D2� a2� E′′W'_ ) d = �� f’’�
� 

V′′  ) W,                                                                                                       (19) 

 

Consider the case where both the boundaries are free as well as perfect conductors of heat and concentrations. The case of two 

free boundaries is a little artificial but it enables us to find analytical solutions and to make some qualitative conclusions. The 

appropriate boundary conditions, with respect to which Equations (15)- (19) must be solved  Chandrasekhar [1]. 

W = D2W = 0,   c   g   d  0,   DZ = 0, at z=0 and z=1.                                                                              (20) 

 

The case of two free boundaries, though a little artificial, is the most appropriate for stellar atmospheres Spiegel. Using the above 

boundary conditions, it can be shown that all the even order derivatives of W must vanish for z=0 and z=1 and hence,  the proper 

solution of W characterizing the lowest mode is  

W = W0 sinhz,                                                                                                                                                         (21) 

where W0  is a constant.              

 

Eliminating  Θ, Γ,  Ψ  and  Z between Equations (15)- (19) and substituting the proper solution 

 W = W0 sinhz, in the resultant equation, we obtain the dispersion relation  

R1=(
 �iN
N  ) � 8\�

�  �  �
] �1 � j_� ` L (1+x + i E =� _� ) +kl�� 

  �iN i 8 m n� \�
No  4p�

�    i �
q��r8\� s  t  

] + S1 �   �iN i 8 m n� \�
��i Ni 8 m’u�\�

 ] + S2 �   �iN i 8 m n� \�
��i Ni 8 m’’u�\�   

 ],  (22) 

where R1 = 
vwf�x

RVyx , S1 = 
v w’f’�x

R V′yx , S1 = 
v w’’f’’�x

R V′yx ,  kl�= 
z{� �x 

R�yx  = ( 
'{ ��

Ry�  )2 , x = 
b�

y�  ,   j_�   \
y�   and P= h' XY.  

 Equation (20) is the required dispersion relation including the effect of rotation, medium permeability, kinematic viscoelasticity 

and stable solute gradients on the triple- diffusive convection of Walters’ (Model B´) rotating fluid in the presence of porous 

medium.  
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4. RESULTS AND DISCUSSION: 
4.1 The stationary convection 
When the instability sets in as stationary convection, the marginal state will be characterized by _=0. Putting _=0, the dispersion 

relation (20) reduces to  

R1 =  
��iN �

}~  +P kl�
��i� 

�  +S1+ S2                                                                                                                    (23) 

which expresses the modified Rayleigh number R1 as a function of the dimensionless wave number x and the parameters kl� , s1,s2 

and P. The parameter F accounting for the kinematic viscoelasticity effect vanishes for the stationary convection.  

              To investigate the effects of stable solute gradients, rotation and medium permeability, we examine the behavior 

of  ���
���

,  ���
���

,   
 ���
����

,   ���
�]   analytically. Equation (22) yields 

  
 Z��
Z��

 = 1,                                                                                                                                                                  (24) 

  
 ���
���

 = 1,                                                                                                                                                                  (25) 

              This implies that the stable solute gradients have a stabilizing effect on triple- diffusive convection in Walters’ (Model 

B´) fluid in porous medium. The reverse solute gradients have a destabilizing effect on the system and  ���
���

,  ���
���

 become negative. 

Equation (22) also yields 

 
���
����

 = ��i� 
�  P,                                                                                                                                                        (26) 

 

The rotation, therefore, has always a stabilizing effect on triple-diffusive convection in Walters’ (Model B´) fluid in porous 

medium. It is evident from (22) that 

   ���
�]   =� 

��i� 
�   [��i� 

��  � kl�]                                                                                                                                (27) 

In the absence of rotation (kl� � 0 , Z��
Z~   is given by  

   ���
�]   =�  ��i� �

� ��  ,                                                                                                                                                    (28) 

which is always negative. The medium permeability, therefore, has a destabilizing effect on triple-diffusive convection in 

Walters’ (Model B´) fluid in porous medium in the absence of rotation. In the presence of rotation, the medium permeability has 

a destabilizing (or stabilizing) effect on the system if kl�< ( or > )  �i�
��  . It has been observed that as the rotation parameter 

increases, the stabilizing effect of medium permeability also increases.  

 

4.2 Stability of the system and oscillatory modes 
Here we will examine the possibility of oscillatory modes, if any, in stability problem due to the presence of kinematic 

viscoelasticity, stable solute gradients, and rotation. Multiplying equation (15) by W*, the complex conjugate of W, and using 

(16) - (19) together with the boundary conditions (20), we obtain 

� \�
�    �  �

]^
�1 � σ � ` L  I1 – ( vwV��

Rf ) [I2 + � =� _* I3] + ( 
v w’V’b�

Rf′  )[I4 + �′W�_* I5] + �v w’’V’’b�

R f′′ � [I6 + �′′W'_* I7] 

+ d2 � � �
�   �  �

]^
�1 � σ �` L  I8 = 0,                                                                                                                           (29) 

 

Where I1 = � �|��|' � a'|�|' �
� )dz,               I2 =  �  �|�c|' � a'|c|' �

� )dz,      

              I3 =   � �|c|'�
� )dz,                                    I4 =  �  �|�g|' � a'|g|' �

� )dz,     

              I5 =   � �|g|' � 
� )dz,                                   I6 =  �  �|�d |' � a'|d |' �

� )dz,      

              I7 =  � �|d |' � 
� )dz,                                  I8 =  � �|�|' �

� )dz,                                                        (30 ) 

 

The integral I1, I2,……….I8  are all positive definite. Putting _ = _�+i _� and equating the real and imaginary parts of equation 

(29), we obtain  

[ � ��  � 

 s
]^
  )  I1 – ( vwV��

Rf )�=� I3 + ( 
v w’V’b�

Rf′ )�′W�I5 + �v w’’V’’b�

R f′ ��′′W'_* I7+d2 � ��  � 

 s
]^
  )  I8] _�  

                                                                   = –�  ��]^
 - 

vwV��

Rf  I2 + 
v w’V’b�

Rf′  I4 +  
v w’’V’’b�

R f′′  I6 +  
��

]^
 I8],                             (31) 

 

 [ � ��  � 

 s
]^
  ) I1 + ( vwV��

Rf )�=� I3 –  ( 
v w’V’b�

Rf′ )�′W�I5 – �v w’’V’’b�

R f′ ��′′W' I7 –d2 � ��  � 

 s
]^
  )  I8 ] _� =0.                       (32) 

 

It is evident from (31) that _�  is positive or negative. The system is, therefore, stable or unstable. It is clear from (32) that _� may 

be zero or non-zero, the modes may be non-oscillatory or oscillatory accordingly. The oscillatory modes are introduced due to the 

presence of kinematic viscoelasticity, stable solute gradients and rotation, which were non-existent in their absence.  
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4.3 The case of overstability 
The present section is devoted to find the possibility that the observed instability may really be overstability. Since we wish to 

determine the Rayleigh number for the onset of instability through state of pure oscillations, it is suffices to find conditions for 

which (22) will admit of solutions with _� real.  

Equating real and imaginary parts of (22) and eliminating R1 between them, we obtain 

A3c
3+A2c1

2 +A1c1 +A0 =0,                                                                                                                           (33) 

Where, c1 = _�
' and b = 1+x and 

A3 = ���′W��′′W' ' � �
� �  s

]  �
'
  [   ��� 

]  + � � �
� �  s

]  �  ]                                                                                         (34)  

 

A0 =��[  �]� �
 �
� �  s

]  �+ 
  ��� 
]e � kl� �

 �
� �  s

]  �+ kl�
  ��� 
�~ ]+

  e

]�  (b�1  [¡�(E=� � �′W�)+ ¡'�E=� ��′′W' ] (35)   

 

The coefficient   A2 and A1 being quite lengthy and not needed in the discussion of overstability, so has not been written here.  

 Since _� is real for overstability, the three values of c1 ( = _�
') are positive. The product of roots of equation (33) is �  

 l#
le

 , and if 

this is to negative, then A3 and A0 are of the same sign. Now the product of roots is negative if  

E=�> E′W� , E=�> E′′W�, E=�> 
]e ���

�   and 
 £
 ~ >  

 �
�,                                                                                           (36) 

which implies  

E′- < E -′, E′′- < E -′′ , - < 
 �Re�e¤

 �' { y  ���
e   and  & < 

 ��
� .   

Thus E’- < E -′ , E′′- < E -′′ ,  - < 
 �Re�e¤

 �' { y  ���
e   and   & < 

 ��
�  are the sufficient conditions for the non-existence of overstability, the 

violation of which does not necessarily imply the occurrence of overstability. 
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