(3.231.25.104)
Users online: 1786    [ij] [ij] [ij] 
Email id
 

Research Journal of Pharmacy and Technology
Year : 2016, Volume : 9, Issue : 6
First page : ( 750) Last page : ( 754)
Print ISSN : 0974-3618. Online ISSN : 0974-360X.
Article DOI : 10.5958/0974-360X.2016.00142.6

Variational Bayesian Matrix Factorization and Certain Post Classifiers for Classification of Epilepsy from EEG Signals

Rajaguru Harikumar**, Prabhakar Sunil Kumar*

Department of ECE, Bannari Amman Institute of Technology, India

*Corresponding Author E-mail: sunilprabhakar22@gmail.com

**harikumarrajaguru@gmail.com

Online published on 21 July, 2016.

Abstract

The main aim of this paper is to employ Variational Bayesian Matrix Factorization (VBMF) as a dimensionality reduction technique followed by the Gaussian Mixture Model (GMM), Genetic Algorithm (GA) and Naïve Bayes Classifier (NBC) as post classifiers for the classification of epilepsy risk levels from Electroencephalography (EEG) Signals. Since epilepsy is one of the serious disorders of the brain which is characterized by frequent and recurrent seizures, the detection and classification of it seems to be very important. Using the EEG signals, the epileptic seizures can be analyzed because it aids in the recording, diagnosing and for treating other neurological disorders. In this paper, the results are analyzed and compared in terms of sensitivity, specificity, time delay, quality values, performance index and accuracy.

Top

Keywords

VBMF, GMM, GA, NBC, EEG.

Top

  
║ Site map ║ Privacy Policy ║ Copyright ║ Terms & Conditions ║ Page Rank Tool
434,646,096 visitor(s) since 30th May, 2005.
All rights reserved. Site designed and maintained by DIVA ENTERPRISES PVT. LTD..
Note: Please use Internet Explorer (6.0 or above). Some functionalities may not work in other browsers.